43 research outputs found

    Treatment of Advanced Emphysema with Emphysematous Lung Sealant (AeriSeal (R))

    Get PDF
    Background: This report summarizes initial tests of an emphysematous lung synthetic polymer sealant (ELS) designed to reduce lung volume in patients with advanced emphysema. Objectives: The primary study objective was to define a therapeutic strategy to optimize treatment safety and effectiveness. Methods: ELS therapy was administered bronchoscopically to 25 patients with heterogeneous emphysema in an open-label, noncontrolled study at 6 centers in Germany. Treatment was performed initially at 2-4 subsegments. After 12 weeks, patients were eligible for repeat therapy to a total of 6 sites. Safety and efficacy were assessed after 6 months. Responses were evaluated in terms of changes from baseline in lung physiology, functional capacity, and health-related quality of life. Follow-up is available for 21 of 25 patients. Results: Treatment was well tolerated. There were no treatment-related deaths (i.e. within 90 days of treatment), and an acceptable short-and long-term safety profile. Physiological and clinical benefits were observed at 24 weeks. Efficacy responses were better among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage III patients {[}n = 14; change in residual volume/total lung capacity (Delta RV/TLC) = -7.4 +/- 10.3%; Delta forced expiratory volume in 1 s (Delta FEV(1)) = +15.9 +/- 22.6%; change in forced vital capacity (Delta FVC) = +24.1 +/- 22.7%; change in carbon monoxide lung diffusion capacity (Delta DLCO) = +19.3 +/- 34.8%; change in 6-min walk test (Delta 6MWD) = +28.7 +/- 59.6 m; change in Medical Research Council Dyspnea (Delta MRCD) score = -1.0 +/- 1.04 units; change in St. George's Respiratory Questionnaire (Delta SGRQ) score = -9.9 +/- 15.3 units] than for GOLD stage IV patients (n = 7; Delta RV/TLC = -0.5 +/- 6.4%; Delta FEV 1 = +2.3 +/- 12.3%; Delta FVC = +2.6 +/- 21.1%; Delta DLCO = -2.8 +/- 17.2%; Delta 6MWD = +28.3 +/- 58.4 m; Delta MRCD = 0.3 +/- 0.81 units; Delta SGRQ = -6.7 +/- 7.0 units). Conclusions: ELS therapy shows promise for treating patients with advanced heterogeneous emphysema. Additional studies to assess responses in a larger cohort with a longer follow-up are warranted. Copyright (C) 2011 S. Karger AG, Base

    PPARγ deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution

    Get PDF
    Background: Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear hormone receptor that regulates gene expression, cell proliferation and differentiation. We previously described airway epithelial cell PPARγ deficient mice that develop airspace enlargement with decreased tissue resistance and increased lung volumes. We sought to understand the impact of airspace enlargement in conditionally targeted mice upon the physio-mechanical properties of the lung. Methods: We measured elastic recoil and its determinants, including tissue structure and surface forces. We measured alveolar number using radial alveolar counts, and airspace sizes and their distribution using computer-assisted morphometry. Results: Air vs. saline-filled pressure volume profiles demonstrated loss of lung elastic recoil in targeted mice that was contributed by both tissue components and surface tension, but was proportional to lung volume. There were no significant differences in surfactant quantity/function nor in elastin and collagen content between targeted animals and littermate controls. Importantly, radial alveolar counts were significantly reduced in the targeted animals and at 8 weeks of age there were 18% fewer alveoli with 32% more alveolar ducts. Additionally, the alveolar ducts were 19% larger in the targeted animals. Conclusions: Our data suggest that the functional abnormalities, including loss of recoil are secondary to altered force transmission due to differences in the structure of alveolar ducts, rather than changes in surfactant function or elastin or collagen content. These data further define the nature of abnormal lung maturation in the absence of airway epithelial cell PPARγ and identify a putative genetic determinant of dysanapsis, which may serve as a precursor to chronic lung disease

    Influence of emphysema distribution on pulmonary function parameters in COPD patients

    Get PDF
    Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients

    Linking Microscopic Spatial Patterns of Tissue Destruction in Emphysema to Macroscopic Decline in Stiffness Using a 3D Computational Model

    Get PDF
    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process

    The genetics of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by the interaction of genetic susceptibility and environmental influences. There is increasing evidence that genes link to disease pathogenesis and heterogeneity by causing variation in protease anti-protease systems, defence against oxidative stress and inflammation. The main methods of genomic research for complex disease traits are described, together with the genes implicated in COPD thus far, their roles in disease causation and the future for this area of investigation
    corecore